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Abstract. In [J. Wang, G. Hu, arxiv: 2302.14262], a dual-consistent dual-weighted
residual-based h-adaptive method has been proposed based on a Newton-GMG frame-
work, toward the accurate calculation of a given quantity of interest from Euler equa-
tions. The performance of such a numerical method is satisfactory, i.e., the stable con-
vergence of the quantity of interest can be observed. In this paper, we will focus on
the efficiency issue to further develop this method. Three approaches are studied for
addressing the efficiency issue, i.e., i). using convolutional neural networks as a solver
for dual equations, ii). designing an automatic adjustment strategy for the tolerance
in the h-adaptive process to conduct the local refinement and/or coarsening of mesh
grids, and iii). introducing OpenMP, a shared memory parallelization technique, to ac-
celerate the module such as the solution reconstruction in the method. The feasibility
of each approach and numerical issues are discussed in depth, and significant accel-
eration from those approaches in simulations can be observed clearly from a number
of numerical experiments. In convolutional neural networks, it is worth mentioning
that the dual consistency plays an important role in guaranteeing the efficiency of the
whole method and that unstructured meshes are employed in all simulations.
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1 Introduction

In [1], a dual-consistent dual-weighted residual(DWR)-based adaptive mesh method
has been constructed, from which the smooth convergence of quantity of interest can be
observed. This technique is particularly advantageous in applications such as the optimal
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2 1 INTRODUCTION

design of vehicle shapes where the quantity of interest, e.g., the lift-to-drag ratio, needs
an accurate evaluation.

It is noted that the efficiency of a numerical method is a key feature towards the
practical applications, as in a typical problem of optimal design of the vehicle shape, gov-
erning partial differential equations (PDEs) need to be solved numerous times, depend-
ing on factors such as the number of design parameters, mesh resolution, optimization
method [2]. In our previous work, different modules like reconstruction [3-5], NURBS
enhancement [6] and DWR-based refinement [7, 8] are integrated. As a consequence,
in this paper, efforts are devoted to further improving the efficiency of the numerical
method proposed in [1], to make the method and related library AFVM4CFD a competi-
tive one in the market.

For such a purpose, three approaches will be studied in depth in this paper, includ-
ing i). using convolutional neural networks (CNNs) to produce numerical solutions of
the dual problem, ii). designing an automatic adjustment strategy for the tolerance in
the h-adaptive process, and iii). introducing OpenMP to parallelize modules such as the
solution reconstruction and dual solver in the method.

It is noted that Galerkin orthogonality between numerical solutions and related er-
ror is the reason why Hartmann [9] suggested solving dual equations in a larger space.
In [1], the refinement of mesh grids is employed for such a purpose. However, this ap-
proach is not a good choice from the efficiency point of view [10]. Although there have
been other choices such as raising the order of approximate polynomials [11], high or-
der interpolation of numerical solutions of dual equations [12], it should be pointed out
that, i). solving dual equations using a classical solver involved in all aforementioned
approaches, in which the time-consuming modules such as the construction of the finite-
dimensional space, solving the system of linear equations, etc., need to be implemented,
and ii). numerical solutions of dual equations are adopted as a weight for the mesh adap-
tation in the current framework. Out of the motivation to develop a high-quality mesh,
the trained neural network model can fulfill this requirement while saving time signifi-
cantly.

CNNs, based on the above two observations, become an ideal choice for the solver
of dual equations, due to their ability to fastly generate acceptable numerical solutions
of dual equations. In the recent past, neural networks have been successfully applied to
implement the DWR-based h-adaptation method in computational fluid dynamics(CFD).
For instance, in [13, 14], an encoder-decoder algorithm is developed to predict the indi-
cators generated from dual equations, and in [15], primal solutions and dual solutions
are both obtained from deep neural networks. Similarly, a data-driven goal-oriented
mesh adaptation approach is developed to generate the error indicators in [16]. The re-
cent breakthrough in convolutional neural networks makes training in high-dimensional
problems possible to handle numerical computations in CFD. Besides, libraries build in
Tensorflow [17], Pytorch [15], and cuDNN provide powerful tools to design specific mod-
els that cater to the demands of CFD issues, where the GPUs module can be adopted for
further improvement in the training process. Another reason to choose CNNs in this



work is their generalization ability, i.e., quality numerical solutions of dual equations
with different attack angles, Mach numbers, etc. can be generated effectively. Further-
more, the structures of the datasets in our framework are well-suited for the CNNs, where
the channel collects similar information of specific elements from its reconstruction patch
while height and width represent the value of different variables with corresponding
mathematical properties and dimensionality.

To accelerate the numerical simulation, an automatic adjustment strategy for the
tolerance is constructed in the h-adaptive process. It is known that in an s-adaptive mesh
method after an error indicator is generated for each element, a tolerance needs to be
given to guide the local refinement and/or coarsening of mesh grids so that the global
error of numerical solutions can be effectively controlled. In [1], the strategy for setting
up this tolerance is to use a fixed and sufficiently small one during the whole simulation.
This is not a good strategy since in the first several rounds of adaptive refinement of mesh
grids, unreliable error indicators would result in over-refinement and/or coarsening of
mesh grids if a sufficiently small tolerance is employed. Furthermore, the nonlinearity of
governing equations also implies that a dynamic adjustment of the tolerance would be a
better choice. Motivated by the decreasing threshold method proposed in [19,20], error
indicators are plotted for analysis and the corresponding dynamic tolerance selection
method is developed in this work. Then an automatic DWR-based h-adaptivity method
is developed without manual intervention.

Another efficient technique for accelerating simulations is to use OpenMP [21] to
parallelize modules both for solving primal and dual equations. It is noted that the hard-
ware used in this work for numerical experiments is a workstation with multiple CPU
cores, which makes OpenMP a perfect choice for parallelization. In OpenMP, data race is
a key issue that should be avoided during the parallelization of the algorithm. The good
news is that in our Newton-GMG framework, there are many time-consuming modules,
such as the solution reconstruction, the update of cache information for each element, as
well as the multigrid method, which can be implemented without data race. Hence, in
this paper, the OpenMP parallelization of the algorithm and code proposed in [1] will be
discussed in detail for the acceleration.

In this paper, we will follow the aforementioned three approaches to further improve
the efficiency of the numerical method proposed in [1]. Firstly, we have constructed a
CNNs-based dual solver. For fear of overfitting, techniques such as batch normalization
and pooling have been incorporated. Furthermore, in order to circumvent the issues of
gradient vanishing and explosion, initialization and residual connection modules are in-
tegrated, as highlighted in references [22,23]. This enhanced solver efficiently predicts the
dual equations on the current mesh, facilitating rapid adaptation processes. Notably, the
trained model demonstrates generalization capabilities across training datasets, configu-
rations, and multiple airfoils. Secondly, an automatic adjustment strategy for tolerance is
devised in the h-adaptive process. This strategy revolves around plotting the distribution
of mesh adaptation steps and analyzing them using the Kolmogorov-Smirnov method.
Our findings suggest that the distribution of these indicators closely follows the Weibull
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distribution, characterized by a KS-stat at its uppermost value. However, it should be
noted that the parameters might differ for various adaptation steps. In some configu-
rations, the distribution even aligns more closely with the gamma distribution. Owing
to these variations, relying on a mathematical expression to select tolerance values is
deemed impractical. Instead, we have employed a methodology where values of indi-
cators are systematically sorted, and a fixed proportion is chosen to derive the tolerance
for different adaptation steps. Finally, three modules in our algorithm, i.e., solution re-
construction, update cache information for each element and CNNs form dual solver are
parallelized with OpenMP. The scalability of these modules is illustrated in experiments
with the different number of threads. Using the standard metric of speedup, typical in
parallel computing evaluations, our results indicate a substantial enhancement in the
performance of the framework.

It is found from the numerical experiments that the CNNs dual solver saves time in
an order of magnitude compared with the traditional solver. More specifically, the time
complexity is O(1n). Besides, the dynamic tolerance strategy accelerates the calculation of
the target functional and benefits for automatic selection without manual intervention.
With such a strategy, a stable growth rate of mesh size can be expected. In [1], the impor-
tance of dual consistency within the DWR-based h-adaptation is discussed, such property
extends to the construction of training datasets, which has been further elaborated upon
in this research. The trained model has generalization capabilities that configurations
beyond the trained category can still be simulated precisely. It is worth noting that our
CNN s solver can generate reliable dual solutions on unstructured mesh. With the intro-
duced parallel module, the time spent on primal solver and dual solver has been saved a
lot.

The rest of this paper is organized as follows. In Section 2, we present the fundamen-
tal notations and provide a concise introduction to the Newton-GMG solver. In Section 3,
the architecture of our convolutional neural networks is introduced and the training per-
formance is discussed. We emphasized the importance of dual consistency in the training
process. In Section 4, two acceleration strategies are discussed. We organize the dynamic
tolerance selection method and analyze the effects of this algorithm. Then parallel com-
puting is adopted. In Section 5, we present the details of the numerical experiments,
which show the reliability of our CNNs-based dual solver.

2 A Brief Introduction to Dual-Consistent DWR-based h-adaptive
Newton-GMG

2.1 Basic notations

Let Q) be a domain in R? with boundary T. The inviscid two-dimensional steady
Euler equations derived from the conservation laws can be written as: Find u : QO — R*
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such that
V-F(u)=0, in Q, (1)

subject to a certain set of boundary conditions. Here u and F(u) are the conservative
variables and fluxes, which are given by
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where (uy,uy,)7,p,p,E denote the velocity, density, pressure, and total energy, respectively.
We use the equation of state to close the system, which is

__P 1 5 5
E_7_1+2p(ux+uy). (3)

Here v =1.4 is the ratio of the specific heat of the perfect gas.

2.2 Finite volume discretization

In [8], Equations (1) are solved with finite volume method. The methodology will
be briefly introduced as follows. To derive a discretization scheme, a shape regular sub-
division 7T turns Q) into different control volumes. K; is used to define the i-th element
in this subdivision. ¢;; denotes the common edge of K; and K}, i.e., ¢;; =0dK;NdK;. The
unit outer normal vector on the edge e¢;; with respect to K; is represented as 7; ;. Conse-
quently, with the divergence theorem, the Euler equations in this discretized domain can
be reformulated as

A(u):/QV‘]:(U)dxZZi:/I<iV~f(u)dx:Zi:;7€. F(u)-n;ids=0. 4)

;,€0K;
With the numerical flux #(-,-,-) introduced in this equation, a fully discretized system

can be obtained as
E E 7{ H(ui,uj,ni,j)ds:o. 5)
ij

€ €dK;

2.3 The Newton-GMG solver

To solve the Equation (5), the Newton method is employed for the linearization and
a linear multigrid method proposed in [24] is utilized for solving the system. At first, the
Equation (5) is expanded by the Taylor series. By neglecting the higher-order terms, the
system becomes
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where 0H(+,-,+) /du denotes the Jacobian matrix of numerical flux, and Au; is the incre-
ment of the conservative variables in the i—th element. After each Newton iteration, the
cell average is updated by uf"ﬂ) :ul(”) +Au5”). In the simulation, a regularization term is
added to the system. This regularization is effective since the local residual can quantify
whether the solution is close to a steady state. Based on the observation, the solution is
far from a steady state at the initial stage. With the iteration processed, the solution gets
updated and approaches the steady state where the regularization term gets close to zero.

To solve the Equation (6), the geometrical multigrid technique is applied. In [1], the
regularization and geometrical multigrid methods are also applied to the dual equations
which perform well to get a robust solver for obtaining dual equations.

2.4 Dual Weighted Residual Mesh Adaptation

In practical issues, engineers care about how to calculate the quantity of interest
efficiency. For instance, in the field of shape optimal design, lift and drag are of main
concern. Then the target functionals are considered as

w= [ pr(wn-p, @)

where pr is the pressure along the boundary of airfoil and g in the above formula is given
as
(8)

B (cosa,sina)’ /Cq, for drag calculation,
| (—sina,cosa)? /Ce, for lift calculation.

Indeed, the quantity of interest can be calculated with high precision if the solutions
from (1) are solved accurately. However, the computational cost increases exponentially
with uniform refinement. Then dual-weighted residual method offers an opportunity to
calculate the quantity of interest efficiency. In [12], discretized dual equations are solved
from the perspective of extrapolation, which is easily implemented on a finite volume
scheme. A brief introduction to this method will be given in the following section at first.

Suppose T is the partition of the computational domain into a coarse mesh, and 7,
is the partition into fine mesh correspondingly. The primal equations (1) are denoted by a
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residual form, where ug denotes the numerical solutions obtained from the discretization
on coarse mesh, i.e.

RH<11H):O. (9)

Accordingly, u;, denotes the numerical solutions obtained from the discretization on
fine mesh, i.e.
Rin(w,) =0. (10)

The original motivation of this method is to estimate the target functional 7 (u) on a
fine mesh ), (u;,) without solving the equations on fine mesh. A multiple-variable Taylor
series expansion is applied at first, i.e.,

9n
]h(uh)ZIh(uzlj)JrT (wp—uj)+--, (11)
uy uhH
here u!! represents the coarse solution uy mapped onto the fine space V, via some pro-
longation operator I},

u =Ifluy. (12)

Similarly, the equations on the fine mesh can be expanded through the Taylor expansion,
ie.,

oR
Ron(w) =Roy(uf) + 5 (wp—w) 4+ (13)
uy,

Symbolically, the Jacobian matrix %% can be inverted to get the error representation,
i |l

0
wp— i (FH] )R, (ulh). (14)

H
uy

auh
Substituting the expression (14) into (11), the quantity of interest can be denoted as

Jn(un) = Ju(af)) = (zin) "R (uy)), (15)

where z, |, is obtained from Fully discrete dual equations:

h
ory| ) (o '
I z,= 9T ) (16)
auh u{j auh u{f

In our earlier work, z;, is calculated on the embedded mesh. Various strategies have been
proposed in the literature to simplify this process. For instance, [12,20] used the error
correction method which interpolates the dual solutions to the fine mesh, and in [25],
a smoothing technique is proposed to modify the oscillations due to the interpolation.
Even though, the mesh needs to be refined at first to make further calculations. In this
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work, the dual solutions are obtained from the neural networks and can be used to gen-
erate the error indicators directly on the current mesh. The framework of our previous
algorithm is briefly summarized as follows.

Algorithm 1: DWR for one-step mesh refinement

Data: Initial 75, TOL
Result: 7},
1 Using the Newton-GMG to solve Ry (uy) =0 with residual tolerance 1.0 x 10~3;
2 Interpolate solution uy from the mesh Ky to K, to get u{f ;
3 Record the residual Ry, (u}?);
4 Solve Ry (uy,) =0 with residual tolerance 1.0 x 1073;
5 Using the Newton-GMG to solve the dual equation to get z,;
6 Calculate the error indicator for each element;
7 while E,, > TOL for some Ky do
8 ‘ Adaptively refine the mesh Ky with the process in [5];
9 end

Even though the dual-consistent DWR-based mesh adaptation method shows great
potential for accurately resolving quantities of interest, the generation of high-quality
mesh continues to be a computationally demanding process. We observe that machine
learning techniques, specifically convolutional neural networks (CNNs), may enable the
rapid attainment of dual solutions without compromising precision significantly. The
application of CNNs in predicting dual solutions only affects the adaptation process,
leaving the underlying physical mechanisms of the primal equations unaltered. Conse-
quently, the derivation of dual solutions appears apt for replacement with CNNs-based
methodologies. In the next section, we will introduce how to train neural networks to
get the dual equations so that we can substitute the calculation on the uniformly refined
mesh, i.e. step 4 and step 5.

3 CNNs-based Solutions of Dual Equations

Convolutional neural networks are very similar to the traditional fully connected
neural networks as shown in Figure 1, consisting of learnable weights and biases in dif-
ferent layers. However, the practical issues often concern high-dimensional problems
where the connection between different neurons and layers may become complicated.
In [13], autodecoder neural networks are trained to generate indicators and a topology
map converts the information to the structured mesh. In this work, since the adaptation
is conducted on an unstructured mesh, the map relations are hard to construct. Hence,
we build the architecture which learns from the data directly.
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3.1 Convolutional neural networks

In Equation (16), the dual equations are obtained from the primal solutions. In an
abstract form, the dual equations can be treated as a functional of R, uy,Jy, i-e,

zh:N(Rh,uh,jh), (17)

where the functional NV (-,-,-) is unknown. Since the information of mesh grids is not
included in the training process, Jj, is not suitable to be treated as input. Alternatively,
while the quantity of interest is the integration around the boundary of the airfoil in
this specific model, the location of the elements and the configurations can work well as
inputs. Then the dual solutions can be seen as functional with the expression as follows,

z, =N (Ry,u,,G,Ma,0), (18)

where G is the coordinate of the barycenter of elements, Ma is the Mach number and
0 is attack angle. The neural networks are trained to approximate the unknown func-

sion is high for training a satisfactory model within the fully connected neural networks
framework. Besides, the data structure itself has different spatial and physical properties
which are well-suited for the convolutional operation. Consequently, we consider using
the CNNss for the training.

CNNs offer a more efficient approach to handling high-dimensional problems com-
pared to fully connected networks. Instead of connecting all neurons from the preceding
layer, CNNs establish connections only within local regions of the input. This special-
ized architecture consists of multiple learnable filters, each possessing parameters such
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Figure 2: Convolutional operation.

as weights and biases. When the networks become deeper, the prediction in CNNs is
quicker than that in fully connected neural networks. Inputs for CNNs are typically
tensors or matrices. As filters slide across different portions of the input, they encode
information and transmit it to the subsequent layer. This selective connectivity allows
CNN s to exploit spatial hierarchies and local structures in the input data, resulting in
more effective and computationally efficient learning. Similarly, a decoder process is also
integrated into this framework to pass the encoded information to the final results.

While the training gets processed, the parameters will be updated till the preset ter-
minal. In practical issues, connections between inputs and outputs are often hard to cap-
ture. By introducing the nonlinear activation function, CNNs can learn more complex
patterns and relationships in data. Moreover, the activation function serves not only as a
threshold to determine whether the output should be passed to the subsequent layer but
also plays a pivotal role in the behavior and training dynamics of neural networks. Cen-
tralized activations, where the mean activation of neurons is close to zero, offer several
benefits. For instance, when activations are centered around zero, the direction of gra-
dient descent during training tends to be more consistent, potentially leading to faster
convergence. Moreover, non-centralized activations can exacerbate the vanishing or ex-
ploding gradient problems, especially in deeper networks [26,27]. This is crucial during
the backpropagation process, where differentiable activation functions like the sigmoid,
ReLU, or tanh enable gradient-based learning, guiding the network to iteratively adjust
its weights based on the data. In this work, we adopted the exponential linear unit (ELU)
as the activation function [28]. Unlike other activation functions, ELU allows a negative
value range for inputs less than zero, thereby ensuring that the mean activation of the
neurons remains closer to zero. This centralizing property of ELU helps in mitigating the
bias shift effect considerably, offering a significant advantage over other schemes.

To speed up the training model, we utilized batch normalization, a technique that
accelerates convergence by minimizing internal covariate shifts. After this process, a
higher learning rate can be set without causing unstable training dynamics. Additionally,
for fear of overfitting issues, max pooling methods are incorporated as well. Max pooling
reduces the number of parameters while preserving the most salient features irrespective
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of their spatial position. A brief framework of our CNNs can be found in Table 4 in the
Appendix.

Since the dual equation (16) is solved through the information from primal solutions,
we trained the model with inputs to be the two-dimensional location information, the
Mach number and attack angle, the volume of a specific element, the four-dimensional
solution information and four-dimensional residual information. Then the outputs are
the dual solutions.

In the training process, we adopted the initialization method proposed in [22]. It
provides a better weight initialization for Rectified Linear Unit(ReLU)-based networks,
leading to faster convergence. Besides, we adopted the leaky ReLU activation function
during the initialization process. In order to learn the characteristics of the data better,
the inception module is introduced to help CNNs learn more effective and complex pat-
terns. Besides, since the constructed neural networks contain multiple layers, the initial-
ization method addresses the vanishing gradient problem more effectively for networks
using ReLU activation functions, ensuring that the gradients are propagated effectively
throughout the layers. Moreover, the implementation of residual connections within the
network architecture plays an important role in mitigating the gradient vanishing phe-
nomenon commonly encountered in deep neural networks. This method facilitates the
effective propagation of gradients during backpropagation by introducing shortcut con-
nections that bypass one or more layers. As depicted in Figure 23 in the Appendix, the
residual connections are strategically added to the network. These connections allow the
flow of information and gradients to circumvent the nonlinear transformations, thereby
preserving the strength of the gradient signal across multiple layers. It also adds regu-
larization to the model, preventing overfitting by providing a form of parameter sharing
across layers [23].

Since the real value of dual solutions is mostly lower than 0.01, the general loss func-
tion may not be suitable to generate a reliable value. The mean square error is set as
the loss function at first. Even though the convergence of the loss function is smooth,
the trained model may not generate reliable values for the four dual variables simulta-
neously. Then the loss function we considered is the summation of relative errors in the
four outputs, i.e.,

Zi—Zj

Loss=)_

i

. (19)

Zj

Here z; is the target value while Z; is the predicted value. By using Bayesian retrieval
methods, we found the Adam optimizer best fits the training process.

The datasets we used contain the data from simulations with different configura-
tions. To mitigate the model overfitted on specific models, we adopted the cross-validation
technique. As shown in Figure 3, the datasets are divided into 5 different subsets for in-
stance. For each fold, the network is trained with the training sets and evaluated with
the remaining validation set. Such a process is repeated 5 times such that every subset
has been tested as a validation set. By averaging the model performance over different
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Fold 1

Test Train Train Train Train
Dataset 1 Dataset2 Dataset 3 Dataset 4 Dataset 5

Fold 2

Train Test Train Train Train
Dataset 1 Dataset2 Dataset 3 Dataset 4 Dataset 5

Fold 3

Train Train Test Train Train
Dataset 1 Dataset2 Dataset 3 Dataset 4 Dataset 5

Fold 4

Train Train Train Test Train
Dataset 1 Dataset2 Dataset 3 Dataset 4 Dataset 5

Fold 5

Train Train Train Train Test
Dataset 1 Dataset2 Dataset 3 Dataset 4 Dataset 5

Figure 3: Schemetic of cross-validation.

subsets, we can reduce the variability and get a better understanding of how the model
will perform on unseen data. Since the loss function adopted is a relative error, the The
result of the training with this cross-validation process can be seen below. The behavior
of this model can be seen in Figure 5. The figures indicate that the trained model can
capture the structures of the dual solutions. Details about the practical calculation will
be introduced in the numerical experiment section.

The result in Figure 4 is a test on the training for airfoil NACA0012 with 0.8 Mach
number, 1.25° attack angle. The loss can converge to ideal precision when the iteration
is processed. The Fold2 may not behave like other examples since the data size is not
sufficiently large which will be remitted in a more complex data set.

3.2 Generation of datasets

The training datasets are as important as the model structure for machine learning
projects. As described above, the equation (18) depicts the relation between the primal
variables and dual variables, i.e., input-target pair for the learning process. Intuitively,
the dual variables are predominantly influenced by the neighbor elements of the selected
central. Then the input can be converted to the tensor as reconstruction_patchx feature x
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Figure 4: The subfigures (a) to (e) show the individual loss curves during the cross-
validation process. The dataset only contains Mach number 0.8, attack angle 1.25°.

dim, generally 5x 3 x5. Here feature includes the configurations, primal solutions, and
primal residuals. For the training with various configurations, the reconstruction patch
is only considered in a degenerate form, i.e., the tensor is only 1x3 x 5. The performance
of the model is still satisfactory since both primal and dual solutions are considered in
first-order form. A higher dimensional reconstruction patch will be considered within a
higher order numerical scheme like in [29]. Besides, the error estimate of the quantity of
interest can be more accurate if the residuals of the dual equation have been taken into
account [30]. However, the neural network and corresponding datasets should be further
designed to support the calculation. A simplified case is considered with respect to the
finite volume method in this work. The datasets are generated from the traditional GMG
solver and saved as data files. The Newton-GMG solver we used contains a module that
memorizes the cache information of specific elements, including location, Mach number,
attack angle, and reconstruction patch. It not only helps to accelerate the simulation
process but also makes it easy to load data for the learning process.

Mach Number | 0.62 | 0.68 | 0.71 | 0.73 | 0.78 08 |08]| 08
Attack Angle | 1.29° | 0.82° | 0° | 1.05° | -2.27° | 1.25° | 0° | -1.25°

Table 1: Parameters of Data Sets
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(a) GMG solver - p (b) CNN s solver - p
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(e) GMG solver - puy, (f) CNN's solver - puy
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Figure 5: Left column: Dual variables generated by GMG solver; Right column: Dual
variables generated by CNNs solver; Mach number 0.8, attack angle 1.25°.
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To develop a model capable of predicting dual solutions across varying Mach num-
bers and attack angles, we collated data generated by the GMG solver with the param-
eters in Table 1. The cumulative size of all files amounts to 212 MB. The training and
simulation are conducted on the device with the following parameters:

e CPU: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz 18 Cores.
e RAM: 64G.

e GPU: NVIDIA A100 Tensor Core GPU.

e RAM: 80G.

During the training process, the data files are processed together with Python and
then converted to tensor form. The batch size is usually set as 16384. It should be noted
that the quality of data is also a significant factor that influences the prediction of dual
solutions. If the traditional GMG solver can not supply data with satisfactory quality, the
performance of CNNs-based mesh adaptation will be influenced sharply.

3.3 Dual consistency for training datasets in CNNs

In [1], we analyzed the importance of dual consistency for the DWR-based adapta-
tion in Newton-GMG solver. If the dual consistency is not satisfied, waste on the com-
putational resources will occur [9,11,31]. Worse still, the adaptation may lead to a mesh
with target function with lower error. We test the training data from NACA0012 with 0.5
Mach number, 0 attack angle, and zero normal velocity boundary condition. In this study,
we validate that if the training datasets are obtained from a dual-inconsistent solver, the
performance of CNNs prediction will perform badly as well. The convolutional neu-
ral networks can not capture the relation between dual and primal solvers. Then the
training process misunderstands the distribution, leading to even worse dual variables.
Conversely, in the datasets obtained from a dual-consistent solver, the smooth and sym-
metric properties can be preserved in this model as shown in Figure 6. Then, it indicated
that a dual-consistent DWR-based solver should be constructed at first. Based on that, an
efficient CNNs form dual solver can be expected.

It is worth noting that the datasets of dual solutions we obtained are from the GMG
solver. As the dual-inconsistent scheme may pollute the adaptation around the bound-
ary, some unexpected singularities may occur. Then the dual equations may generate a
linear system with a loss of regularization. In order to resolve this issue, a regulariza-
tion term was added to the dual equations, leading to a GMG solver with a more stable
convergence rate. To handle more complicated boundary conditions, the boundary mod-
ification techniques proposed by Hartmann [32] should be introduced.

Dual consistency is a critical aspect of the DWR-based adaptation method, and the
network is also rigorously designed to test this property. The outputs are designed as
four 64 to 1 fully connected layers instead of a single 64 to 4 fully connected layer for
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(a) Consistent CNNs solver - p (b) Inconsistent CNNss solver - p

(c) Consistent CNNs solver - puy (d) Inconsistent CNNs solver - puy

(e) Consistent CNNs solver - puy (f) Inconsistent CNNs solver - pu,

(g) Consistent CNNs solver - E (h) Inconsistent CNNs solver - E

Figure 6: The dual variables generated by CNNs solver. Left column: dual-consistent
datasets; Right column: dual-inconsistent datasets; Mach number 0.5, attack angle 0°
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such a purpose as the outputs are mathematically independent. Then the network is
designed to minimize the interference of unrelated information and maintain the math-
ematical independence among the variables. Additionally, it is worth mentioning that
the trained model has the potential to be extended further. For instance, after obtaining
the dual variables, it could be employed to directly calculate indicators on the element
level. However, focusing on dual consistency, we choose to utilize the current network
architecture.

4 Acceleration Strategy

The trained model above is saved as the open neural network exchange(ONNX)
file form so that the C++ library maintained by our group AFVM4CMD can invoke the
dual solver. AFVM4CFD is a sophisticated solver that can efficiently handle steady Eu-
ler equations. This solver incorporates modules such as k-exact reconstruction, Bezier
curves, and geometrical multigrid techniques, thereby offering robust numerical solu-
tions.

With the introduction of the trained model, which substitutes the conventional dual
solver, the DWR-based mesh adaptation process is notably expedited. To further bolster
performance and accelerate the simulation process, we implemented additional enhance-
ments within this framework. The subsequent subsections will elaborate on this module
that significantly optimizes the numerical experimentation process.

4.1 An Automatic Adjustment of Tolerance in an h-adaptive process

Even though the DWR-based mesh adaptation method generates high-quality in-
dicators, formulating an appropriate tolerance presents challenges. Different from the
general adaptation issues, setting the tolerance too low in DWR-based adaptation can
result in subsequent steps resembling a uniform refinement. This disobeys the initial in-
tent of economically solving the quantity of interest. Conversely, if the tolerance is set
too high, the adaptation strategy may fail to capture the region that influences the target
function significantly. Motivated by the decreasing threshold method proposed in [20],
the indicators are plotted for analysis and a straightforward algorithm is proposed to ad-
just the tolerance dynamically. The indicator we adopted is the multiplication of dual
solutions and residuals, i.e.,

nr, =Y _|(zn) Ry (uf))], (20)

Tjj

where Tj; is the subelements T;. We recorded the indicators statistically in three consec-
utive refined meshes. The distribution concentrated on the left end. Then we tested the
distribution function with the Kolmogorov-Smirnov method. The result shows that the
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Figure 7: Indicators in three consecutive refined meshes

distribution may approximate Weibull distribution with KS-stat equals 0.98327 in this
example.

However, when the configurations change, the distribution may approximate the
gamma distribution in some circumstances. Then it is not robust to choose the tolerance
with the expression of the distribution function. Alternatively, we designed different
strategies. The indicators in each element of a given mesh are sorted at first. Then, toler-
ance is calculated from the indicators. For example, a fixed proportion of the element size
can be selected, which leads to a steady growth of element size during the mesh adapta-
tion process. In addition, the index which denotes the average number with a variation
of significance can be calculated, which resembles the method in [19] if the distribution is
known in advance. In this model, the tolerance can be calculated with the mathematical
expression of Weibull distribution. In these ways, with the mesh adaptation processed,
the tolerance can be adjusted dynamically. Since we are dealing with different configura-
tions, the first case is the most robust which is applied in the simulation in this research.

To test the dynamic tolerance strategy, numerical experiments are conducted in this
part. We compared the result with four times uniformly refined mesh. After introduc-
ing the dynamic tolerance strategy, the number of elements is growing steadily, which
means that the corresponding growth of the number of elements can be implemented as
expected to achieve the required error. From the result in Table 2, if the constant tolerance
is set high, the adaptation may not capture the area that influences the target functional
mostly, leading to a rough precision. Conversely, if the constant tolerance is set low, the
adaptation at the beginning stage may behave like a uniform refinement, which takes a
long time for the calculation of dual equations. However, the dynamic tolerance strategy
preserves a stable growth rate, and an expected precision while saving time for gener-
ating dual solutions compared with the lower constant tolerance strategy. As shown in
Figure 8, the dynamic tolerance strategy performs well for generating the mesh which
calculates the target functional precisely.

From the above post-processing technique, we developed a more efficient frame-
work for solving the quantity of interest with the CNNs solver. The algorithm is orga-
nized as follows:
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Tolerance Adaptation
1st 2nd 3rd 4th
Elements 11130 33945 104985 329901
Refined Rate 0.69 0.68 0.70 0.71
Dynamic | Tolerance 470x10" 1 [ 224x107 1 [ 9.77x10712 | 1.50x 10~ 2
Time for Dual 28 111 420 1811
Error 0.01329 0.00305 0.00074 0.00010
Elements 11961 31581 75363 148020
Constant 1 | Refined Rate 0.76 0.55 0.46 0.32
3.0x10~ 1 [ Time for Dual 28 120 377 1186
Error 0.01331 0.00312 0.00157 0.00133
Elements 14529 50781 134772 298170
Constant 1 | Refined Rate 0.99 0.83 0.55 0.40
3.0x10712 | Time for Dual 28 150 664 2442
Error 0.01332 0.00294 0.00069 0.00024

Table 2: Comparison of dynamic and constant tolerance Strategies. The “Time for Dual”
is recorded as wall time with unit “seconds”.

Algorithm 2: DWR for one-step mesh refinement

Data: Initial 74, TOL
Result: 7,
1 Using the Newton-GMG to solve Ry (uy) =0 with residual tolerance 1.0 x 10~3;
2 Convert the element information to Tensors’ form,;
3 Generating the dual solutions with the trained ONNX model;
4 Calculate the error indicator for each element;
5 Select the dynamic tolerance for adaptation;
6 while E,, > TOL for some Ky do
7 | Adaptively refine the mesh Ky with the process in [5];
8 end

There are many different methods that can expedite the calculation of dual solvers.
For example, the BiCG method in [29,33] is adopted to calculate the dual and primal prob-
lems at once and the multiple precision [10] is adopted to accelerate the dual solver. In
our framework, based on the Newton-GMG method, the calculation of the primal equa-
tion and the dual equation is independent. Then the CNNs dual solver is constructed to
accelerate the mesh adaptation. It should be noted that the Algorithm 1 of GMG dual
solver and the constructed Algorithm 2 of CNNs dual solver share the same process of
calculating the primal equation with CPU. In order to guarantee the fairness of compar-
ison, the trained ONNX model is also invoked and executed by the CPU. However, the
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Figure 8: Consecutive refined meshes with dynamic tolerance strategy. NACAQ0012,
Mach number 0.8, attack angle 1.25°.

model can be further accelerated by executing on GPU.

4.2 OpenMP parallelization of the algorithm

Parallel computing enables the simultaneous execution of computations, leading to
significant reductions in time, especially for the CFD domain where simulations can be
extremely time-consuming. Among these, OpenMP is a widely used parallel program-
ming model that greatly facilitates the execution of tasks by dividing them into multiple
threads that can run concurrently. However, it requires a careful design of the algorithm
to avoid potential pitfalls. In this part, we are mainly concerned with the scalability of
different parts of the algorithm.

The primal solver, Newton-GMG solver, contains reconstruction, update cell aver-
age, and geometrical multigrid module for each Newton iteration step. If the reconstruc-
tion patch should be built in each Newton iteration step, it will consume too much time.
Then we build a cache module to reserve the information of the reconstruction patch in
advance so that the identical information will not be calculated redundantly. Since the
update of the cell average is independent for different elements, it exhibits a satisfactory
performance of parallelization.

The speedup in parallel computing is generally defined as

Speedup = tt((;])), (21)

where #(1) is the time for running the algorithm with one processor and ¢(N) for N pro-
cessors respectively.

Theoretically, the time used for parallel computing will be halved as the number
of threads doubles. Then the ideal value of speedup should be N when there exist N
processors. However, the performance of parallel computing may not behave as expected
due to the complexity of the algorithm. To compare the efficiency of the parallelization
in our framework, the problem size remains constant in this section. The experiments in
this part are all conducted on RAE2822 airfoil whose Mach number is 0.729, attack angle
2.31° on the mesh with 232,704 elements.
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Figure 9: Left: Mean time spent on modules during the Newton iteration step with the
different number of threads. Right: Time spent on the reconstruction during the whole
Newton iteration process.
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Figure 10: Left: Total time spent for the primal solver with the different number of
threads. Right: Total time spent on the dual solver with the different number of threads.

The performance can be seen in Figure 9. It illustrates that the reconstruction part
and update part are well suited for parallelization. With the increase in the number of
threads, time spent on the calculation has been saved significantly. However, the lower-
upper symmetric Gauss-Seidel iteration in each Newton iteration step is not suitable for
parallelization, which cannot be optimized even if more threads are used. Then the scal-
ability for the whole process of the primal solver is limited. Figure 10 illustrates the
effect of scalability of primal solver and dual solver. It shows that parallel computing
has significantly enhanced computational efficiency, and the scalability of the dual solver
further demonstrates that the method of using neural networks to solve dual solutions
can greatly accelerate the calculation. The initialization of the trained ONNX model in-
fluenced the scalability and will be improved upon in future work. Even though, paral-
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lelization is still an effective technique for accelerating the simulation of our algorithm.
Then the following numerical experiments are all conducted with parallelism.

5 Numerical Experiments

In this section, we will show the performance of CNNs for generating dual solutions
with significant time savings. Then the generalizations of the model are demonstrated
in three different aspects. Firstly, even when we deal with the adaptation with data
not included in the training sets, the behavior still preserves well till the expected preci-
sion. Secondly, the model is trained with different Mach numbers and attack angles. The
configurations beyond the training categories still perform well with the trained model.
Thirdly, since the framework is constructed on an unstructured mesh, it is very important
to show that the model works well for a more complicated geometry.

5.1 Time consumption of CNNs dual solver

The most important reason we adopt the CNNs solver is its significant acceleration
in generating dual solutions. The trained models are tested on the configurations shown
in Table 3. In each adaptation step, the GMG solver, and CNNs dual solver generate
high-quality meshes which can derive the quantity of interest with comparable preci-
sion. The data reveals that the CNNs dual solver can dramatically reduce computational
time, particularly as the adaptive process progressively advances. In the Three-Airfoils
model, which contains much more complicated geometries, the CNNs solver shows great
potential for time-saving.

Wall time for dual in different step (seconds)

Configurations 1st 2nd 3rd 4th

CNNs | GMG | CNNs | GMG | CNNs | GMG | CNNs | GMG
Case 1 9 28 25 111 81 420 295 1811
Case 2 9 29 28 114 93 373 382 2253
Case 3 9 31 27 125 95 519 387 2708
Case 4 9 32 25 113 78 411 258 1544
Case 5 422 2324 | 1145 | 9286 | 6521 | 64613 - -

Table 3: Comparision of CNNs solver and GMG solver with wall time for dual in different
adaptation steps. Case 1 for NACA0012, 0.8 Mach number, 1.25° attack angle, Case 2 for
NACAO0012, 0.76 Mach number, 1.05° attack angle, Case 3 for NACAQ0012, 0.82 Mach
number, -1.65° attack angle, Case 4 for RAE2822, 0.729 Mach number, 2.31° attack angle
and Case 5 for 3-NACAQ012, 0.8 Mach number, 1.25° attack angle.
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5.2 Generalization and model performance

5.2.1 Generalization on the training set

Figure 11: Consecutive refined meshes with CNNs dual solver. NACA0012, Mach num-
ber 0.8, attack angle 1.25°.
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Figure 12: Comparison of error and time cost with the dual solver of GMG form and
CNNs form. NACA0012, Mach number 0.8, attack angle 1.25°.

In Figure 5, the CNNs captured the main structure of dual solutions. With the sub-
stituted CNNs form the dual solver, the adaptation gets processed steadily. In Figure 11,
it is shown that the dual solver of CNNs form can generate a mesh that balances the dual
equations and residuals similar to the GMG solver. The result can be seen from Figure
12 that the error of CNNs dual solver is comparable to the GMG solver. Here we use
the mesh with 4 times uniform refinement with 930,816 elements to generate a reference
value, which is 0.026201. However, comparing the time for generating the refined mesh,
the CNN5s form can save time by an order of magnitude. The results in Figure 12 indicate
that time spent on the GMG solver grows exponentially, while the CNNs solver grows
linearly. This can be explained that the CNNs solver calls the trained model element by
element, then the time complexity of the CNNs solver is just O(n), where n is the num-
ber of elements. It is worth noting that to train the CNNs dual solver, we only use the
datasets from the mesh with one and two times uniform refinement. In other words, the
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third and fourth-time refinement is the prediction beyond the training set. As a result, the
trained CNNs solver is capable of generating credible dual solutions in this framework.

5.2.2 Generalization on the configurations

In a shape-optimal design problem, the configurations should be changed for nu-
merous experiments. If the CNNs model needs to be trained every time, the time spent
on the training is still expensive. Nonetheless, since the configurations can be treated
as input to the CNNs, we can train the model with various configurations so that it can
handle different simulations. The CNNs architecture we built is capable of extracting the
features between different Mach numbers and attack angles. We tested the trained model
with the following configurations:

* NACAOQ012, 0.76 Mach, 1.05° attack angle ;
* NACAQ012, 0.82 Mach, -1.65° attack angle ;
e RAE2822,0.729 Mach, 2.31° attack angle.

Results from Figure 15 demonstrate that, compared to the models in Figure 4, the
newly trained models exhibit more significant fluctuations in loss reduction. This in-
creased volatility is attributable to the larger dataset used in this training, presenting
greater challenges. Despite these challenges, the final convergence outcomes are satisfac-
tory, resulting in a trained model that is more versatile, and capable of handling a broader
range of Mach numbers and attack angles effectively. Then we test the experiment whose
configurations are not included in the training sets. Firstly, the Mach number is set at 0.76
while the attack angle is set at 1.05. The distribution of dual variables can be seen in Fig-
ure 13. Similarly, as seen in Figure 14, the CNNs solver generates mesh which solved the
target functional in a comparable error with the GMG solver. However, the CNNs solver
saves time sharply in this experiment.

For fear that the convolutional neural networks may misunderstand the relation be-
tween primal and dual solver, we shall apply the model for other configurations. Ac-
cording to our experience, if the training sets are not sufficient enough, the CNNs dual
solver may focus the refinement area on the top part of the airfoil. Then, we used the
same ONNX model trained above to configurations with minus attack angle. Here we
test the simulation with Mach number 0.82, and attack angle —1.65. In Figure 16, the
trained model performs well on the different configurations, showing that the ability of
our CNNs form dual solver can detect the main region for solving the target functional
precisely. The precision and time spent for the adaptation are shown in Figure 17. The
time spent on CNNs dual solver saves time for an order of magnitude while the preci-
sions are comparable, which further verifies the reliability of our CNNs solver.

Moreover, the trained model is tested on the RAE2822 airfoil. It demonstrates the
model also performs satisfactorily since the precision is comparable to the GMG solver
while saving time significantly as shown in Figure 18. The consecutive refined meshes
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(a) GMG solver - p (b) CNN s solver - p

(c) GMG solver - puy (d) CNNSs solver - puy

.

(e) GMG solver - puy, (f) CNN s solver- pu,,

(g) GMG solver - E (h) CNNis solver - E

Figure 13: Left column: Dual variables generated by GMG solver; Right column: Dual
variables generated by CNNs solver; Mach number 0.76, attack angle 1.05°.
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Figure 14: Comparison of error and time cost with the dual solver of GMG form and
CNNs form. NACA0012, Mach number 0.76, attack angle 1.05.
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Figure 15: The subfigures (a) to (e) show the individual loss curves during the cross-
validation process. Datasets contain Mach number and attack angle from Table 1.

with the CNNs dual solver are illustrated in Figure 19. The dual solver can also detect
the main regions that influence the target functional most.
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(a) GMG solver - p (b) CNN s solver - p

(c) GMG solver - puy (d) CNNSs solver - puy

(e) GMG solver - puy, (f) CNN' s solver - puy,

(g) GMG solver - E (h) CNNis solver - E

Figure 16: Left column: Dual variables generated by GMG solver; Right column: Dual
variables generated by CNNs solver; Mach number 0.82, attack angle -1.65°.
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Figure 17: Comparison of error and time cost with the dual solver of GMG form and
CNNs form. NACA0012, Mach number 0.82, attack angle -1.65.
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Figure 18: Comparison of error and time cost with the dual solver of GMG form and
CNN s form. RAE2822, Mach number 0.729, attack angle 2.31.
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Figure 19: Consecutive refined meshes with CNNs dual solver. RAE2822, Mach number
0.729, attack angle 2.31°.
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5.2.3 Generalization on the multiple airfoils

The benefit of our dual solver is the saving on the time for adaptation while the cost
for the training is acceptable. In the training process, the dual consistency makes the
model more reliable. Moreover, the attention mechanism is introduced in this work. It
can still work well for multi-airfoil problems even on the unstructured mesh. In this part,
we will show the feasibility of handling complicated geometry.

We chose a model with 3 NACAO0012 airfoils, and the target functional is the drag of
the leading airfoil. According to the simulation in Figure 21, the CNNs form dual solver
captured the main region and focused on the leading airfoil.

le-01 70000
GMG solver GMG solver ——
CNNs solver —=— CNNs solver —=—
60000
—50000
le-02 S
©
C
40000 [
S )
= [}
i £
-530000
1e-03 } ©
§20000 r
10000 -
le-04 . 0 ! . . . .
100000 0 100000 200000 300000 400000 500000 600000 700000
Number of Elements Number of Elements

Figure 20: Comparison of error and time cost with the dual solver of GMG form and
CNNs form. Three NACAO0012 airfoils, Mach number 0.8, attack angle 1.25°.

Figure 21: Meshes around the three different airfoils; Left: the leading airfoil; Middle: the
upper airfoil; Right: the below airfoil.

It preserves a comparable precision similar to the GMG solver while saving time
sharply as seen in Figure 20. The initial mesh for this model is 23,466. So the uniform
refinement for this model takes a significant time for calculation. Then it is not suitable
to compute the reference value with 5 times uniform refinement. For this sake, we only
conduct the adaptation 3 times. As mentioned above, the training only needs data from
the first two refinements. It will not cost too much computational resources. In this
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(a) GMG solver - p (b) CNN s solver- p

(c) GMG solver - puy (d) CNNSs solver - puy

(e) GMG solver -pu,, (f) CNN's solver - puy

(g) GMG solver - E (h) CNNs solver- E

Figure 22: Three Airfoils. Left column: Dual variables generated by GMG solver; Right
column: Dual variables generated by CNNs solver; Mach number 0.8, attack angle 1.25°.
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model, the precision from the CNNs form mesh generates a mesh whose quantity of
interest is more accurate than the GMG form solver.

The meshes around the different airfoils are shown in Figure 21. The leading air-
foil takes a balance between the residual and dual solutions. The refined areas not only
centered around the leading edge but also around the upper half. However, the dual
solutions are not distributed around the remaining two airfoils. Then the refined areas
are only centered around the shock waves.

5.3 Software

5.3.1 AFVM4CFD

AFVMA4CED is a library maintained by our group. It is an efficient solver which can
solve the steady Euler equations with the h-adaptation method. Different modules such
as k-exact reconstruction, parametric curves, and DWR-based h-adaptivity are integrated
into this library. It is worth mentioning that with the AFVM4CFD, the Euler equations
can be solved well with a satisfactory residual that gets close to the machine precision.
In this work, we further improved the efficiency by introducing the CNNs module. Now
the shape optimal design is under construction.

5.3.2 Training Model

The module build for the training can be seen from table 4. The details of the code
can be found at https://github.com/ShanksFeng/CNNdualsolver.git. We will build
more modules in the training in the future so that the performance will be better. The
training can be conducted on different frameworks of the primal solver as long as the
data structure is matched.

6 Conclusion

Based on the result of this study, the efficiency issues of the dual-consistent dual-
weighted residual-based h-adaptive method proposed in [1] have been successfully ad-
dressed. It is demonstrated from the numerical results that the use of convolutional neu-
ral networks as a solver for dual equations, designing an automatic adjustment strategy
for tolerance in the h-adaptive process, and introducing the OpenMP parallelization tech-
nique can significantly accelerate the whole framework. The feasibility of each approach
was thoroughly discussed. Three salient features can be observed from these techniques
as follows, i). the CNNs help us reduce time complexity to O(n), ii). the algorithm exe-
cutes automatically without manual intervention by the dynamic tolerance strategy. iii).
the parallel computing technique significantly enhanced computational efficiency. Ad-
ditionally, this study validated the importance of dual consistency in generating reliable
training datasets. The trained model demonstrated generalization capabilities, allowing
for precise simulation of configurations beyond the trained categories. It is worth noting
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that the method can be conducted on the unstructured meshes, an example of multiple
airfoils is illustrated. The enhanced efficiency of the method is crucial for the further
study of shape optimization.

Nonetheless, as the geometric information is not effectively integrated within the
neural networks, unexpected oscillations may still occur in the vicinity of the boundary.
This highlights the potential for future investigations utilizing physics-informed neural
networks, aiming for a more accurate prediction of the dual variables. Furthermore,
there is room for optimizing the architecture of our neural networks, with the potential
to achieve more efficient adaptation in subsequent studies.
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7 Appendix

Layer Type | Layer Name | Operation Output Shape Activation
Input input - batch_sizex recon_size x 3x5 | -
Encoding
Conv2d encl convolution(F =64 x recon_size x 1x 3) batch_sizex 64x 3x5 -
Inception | enc2 convolutions with different kernel, Pooling | batch_sizex 512 x 3x5 -
Inception | enc3 convolutions with different kernel, Pooling | batch_sizex 1024 x 3x5 -
ResBlock enc4d Normalization, Res Connect batch_sizex 512 x 3x5 ELU
ResBlock ench Normalization, Res Connect batch_sizex 1024 x 3x5 ELU
ResBlock encoh Normalization, Res Connect batch_sizex 2048 x 3x5 ELU
Decoding

ResBlock decl Normalization, Res Connect batch_sizex 1024 x 3x5 ELU
Inception | dec2 convolutions with different kernel, Pooling | batch_sizex 2048 x 3x5 -
ResBlock dec3 Normalization, Res Connect batch_sizex512 x 3 x5 ELU
Inception | dec4 convolutions with different kernel, Pooling | batch_sizex 1024 x 3x5 -
Linear fcl Fully Connect batch_size x 64 ELU
Linear fc21 Fully Connect batch_sizex 1 -
Linear fc2.2 Fully Connect batch_sizex 1 -
Linear fc2.3 Fully Connect batch _sizex1 -
Linear fc2 4 Fully Connect batch_sizex 1 -
Output output - batch_size x4 -

Table 4: Network architecture

qc
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Figure 23: Framework of neural network.
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